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Abstract. The extremal characteristics of random structures, including trees, graphs,
and networks, are discussed. A statistical physics approach is employed in which
extremal properties are obtained through suitably defined rate equations. A vari-
ety of unusual time dependences and system-size dependences for basic extremal
properties are obtained.

1 Introduction

The goal of this article is to show that methods of non-equilibrium statistical
physics are very useful for analyzing extreme properties of random structures.
Extremes are compelling human curiosities — we are naturally drawn to com-
pilations of various pinnacles of endeavor, such as lists of the most beautiful
people, the richest people, the most-cited scientists, athletic records, etc [1].
More importantly, extremes often manifest themselves in catastrophes, such
as the failure of space shuttles, the breaching of dams in flood conditions, or
stock market crashes. The theory of extreme statistics [2–4] is a powerful tool
for describing the extremes of a set of independent random variables; how-
ever, much less is known about extremes of correlated variables [5–7]. Such
an understanding is crucial, since complex systems are composed of many
subsystems that are highly correlated.
While estimates for the failure probability of a nuclear plant or a space

shuttle still involve guesswork, understanding the extremes of certain corre-
lated random variables is a hard science. Below we demonstrate this thesis
for various extremal characteristics of geometrical features in basic evolving
structures, such as randomly growing trees, graphs, and networks. In each
case, the growth process of the structure induces correlations in the variables
whose extremes are the focus of this review. We shall illustrate how the sta-
tistical physics of classical irreversible processes can be naturally adapted to
elucidate both typical and extremal statistics.
We obtain new scaling laws for extreme properties and consequently give

new insights for a variety of applications. For example, random trees arise
naturally in data storage algorithms [8–10], an important branch of computer
science, and the maximal branch height yields the worst-case performance of
data retrieval algorithms. Random trees also describe various non-equilibrium
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processes, such as irreversible aggregation [11,12] and collisions in gases [13].
Random graphs [14,15] have numerous applications to computer science and
to physical processes such as polymerization [16]. Random growing networks
are used to model the distributions of biological genera, word frequencies,
and income [17,18], the structure of the Internet [19], the World-Wide Web
[20], and social networks [21,22].

As a subtext to this review, it is worth mentioning that problems at
the interface of statistical physics and computer science have been fruitful
and symbiotic. Algorithms and methods developed in one area have found
application in the other field; important examples include the Monte Carlo
method, simulated annealing, and the Dijkstra algorithm. Statistical physics
concepts such as criticality, scaling, universality, and techniques such as repli-
cas have proved useful in diverse interdisciplinary applications such as algo-
rithmic complexity, combinatorial optimization, error correction, compression
algorithms, and image restoration; a review of these topics can be found in
Refs. [23–28].

We will focus on three ubiquitous random structures — trees, graphs, and
networks. Random trees (Sec. 2) can be viewed as the space-time diagram of
irreversible aggregation with a size-independent merging rate. This connec-
tion allows to apply well-known results in aggregation to elucidate the growth
of the largest component (the leader) and the number of changes in its iden-
tity. The number of lead changes grows quadratically with logarithm of the
system size. The time-dependent number of lead changes becomes asymp-
totically self-similar, following a scaling form in which the scaling variable
involves a logarithmic, rather than an algebraic ratio, between the typical
size and the system size. Qualitatively similar properties also characterize
the smallest component in the system.

Another characteristic of random trees is their height. The corresponding
branch height distribution is Poissonian, reflecting the random nature of the
merger process that underlies tree growth. The growth of the tree height
(the maximal branch height) has an interesting relation to traveling wave
propagation. The velocity of this wave yields typical and extremal height
statistics as a corollary.

Random graphs (Sec. 3) are also equivalent to an aggregation process in
which the merging rate of two components is proportional to the product of
their sizes. This system undergoes a gelation transition in which a giant com-
ponent, that contains a finite fraction of the entire mass in the system, arises.
Near this transition, the size distribution of graph components follows a self-
similar behavior. Despite the differences with the size distribution of random
trees, leadership statistics in these two systems are remarkably robust.

Random networks (Sec. 4) can be grown by adding nodes and attaching
the new node to a pre-existing node with a rate that depends on the degree
of the target node. A hallmark of such systems is the statement that “the
rich get richer”; that is, the more popular nodes tend to remain so. This
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adage is in keeping with human experience — a person who is rich is likely to
stay rich, as evidenced by the continued appearance of the same individuals
on lists of wealthiest individuals [29]. We examine whether the rich really
get richer in growing networks by studying properties of the nodes with the
largest degree. In keeping with analysis of random trees and graphs, we focus
on the identity of the most popular node as a function of time, the expected
degree of this most popular node, and the number of lead changes in the most
popular node as a function of time.

2 Random Trees

Random trees underlie physical processes such as coagulation, collisions in
gases [13], and the fragmentation of solids [30,31]. They are also important in
computer science algorithms such as data storage and retrieval [8,9,32–35].
Different extremal characteristics may be important in different contexts.
In aggregation processes, the maximal aggregate size is of interest. In other
cases, the maximal or the minimal branch height are of interest. In Lorentz
gases, the maximum branch height is related to the largest Lyapunov expo-
nent, while in data storage, extremal heights yield best-case and worst-case
algorithm performances.

Fig. 1. Random trees. A forest of random growing trees is equivalent to the space-
time evolution of irreversible aggregation with a size-independent merging rate.
Each branch corresponds to the world line of a cluster. The thickness of each branch
is proportional to the size of the cluster. The sizes of the 4 trees are (left to right)
3, 1, 4, 2 and their heights are 2, 0, 3, 1.

Consider a forest of random trees that is generated randomly as follows
(Fig. 1). Starting with N single-branch trees, two trees are picked randomly
and merged. This process is repeated until a single tree containing all N
branches is generated. We treat the merger process dynamically. Let k be the
number of trees. The transition k → k − 1 occurs with rate rk proportional
to the total number of pairs. Choosing 2/N as the merger rate for each pair
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(i.e., rk = k(k− 1)/N) is convenient as in the thermodynamic limit N →∞,
the normalized density c = 〈k〉/N evolves according to d

dtc = −c2. Given the
initial condition c(0) = 1, the density is

c(t) =
1

1 + t
. (1)

The number of trees is therefore N = 〈k〉 = N(1+ t)−1. Moreover, conserva-
tion of the total number of branches yields the average tree size m = 1 + t.
The results are stated in terms of the physical time t, but can be easily
re-expressed in terms of the intrinsic quantities N or m.

2.1 Size Statistics

Let nk(t) be the number of trees with k branches at time t. The normalized
density ck(t) = nk(t)/N evolves according to the Smoluchowski rate equation
[11,12,36]

dck
dt
=
∑

i+j=k

cicj − 2cck (2)

with the monodisperse initial conditions ck(0) = δk,1. This evolution equation
reflects the fact that trees merge randomly, independent of their size. The
well-known solution to this equation is

ck(t) =
tk−1

(1 + t)k+1
. (3)

Taking the long time limit t → ∞ while keeping the variable k/t fixed, the
size distribution approaches the asymptotic form ck(t) → t−2e−k/t. More
generally, this can be recast as the scaling form

ck(t) ' k−2∗ Φ(k/k∗), (4)

with the scaling function Φ(z) = e−z and the typical tree size k∗ ' t.

2.2 The Leader

Extremal characteristics, such as the size of the largest tree — the leader —
and the number of lead changes, follow directly from the size distribution.
We focus on the asymptotic time regime1, where most of the lead changes
occur, and use the scaled size distribution (4). Let l(t,N) be the average size
of the leader at time t. The basic criterion used to determine the size of the
leader is

Ul(t) ≡
∑

j≥l

nj ' Nt−1e−l/t = 1. (5)

1 The behavior in the early time regime, t¿ 1, can be obtained by using the exact
time dependence (3).
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This simply states that there is one cluster whose size exceeds l(t,N). Solving
for the leader size gives

l(t,N) ' t ln N
t
. (6)

This expression holds in the asymptotic time regime t À 1. For short times
the leader size grows logarithmically with system size l(t ≈ 1) ∼ lnN . Finally,
at times of the order N , the leader becomes of the order of the system size.
The final leader, that is, the ultimate winner, emerges on a time scale of the
order N . This is consistent with the fact that the average “final” time for a
single tree to remain in the system tf , is given by tf = N − 1 as follows from
N = 1.
We now consider the quantity L(t,N), defined as the average number of

lead changes during the time interval (0, t). Lead changes occur when two
trees (neither of which is the leader) merge and overtake the leader. The
flux of probability to surpass the leader is simply the rate of change of the
cumulative distribution. Thus d

dtL(t,N) =
∂
∂tUk

∣

∣

k=l
. Using Ul = 1 yields

d
dtL(t,N) ' lt−2 ' t−1 ln Nt . Therefore, the time-dependent number of lead
changes is [37]

L(t,N) ' ln t lnN − 1
2
(ln t)2, (7)

which can be recast in the self-similar form

L(t,N) ' (lnN)2 F (x), x =
ln t

lnN
, (8)

with the quadratic scaling function F (x) = x − 1
2x

2. Notice the unusual
scaling variable — a ratio of logarithms — in contrast to the ordinary scaling
variable z = k/k∗ underlying the size distribution (4). The scaling variable
still involves the typical size, x = ln k∗/ lnN . Note also that the leader size (6)
can be expressed in terms of the same scaling variable l(t,N) ' t lnN f(x)
with f(x) = d

dxF (x) = 1 − x. Numerical simulations confirm this scaling
behavior [37]. However, the convergence to these asymptotics is slow due to
the logarithmic functional dependences on the system size and time.
The total number of lead changes L(N) as a function of system size N

follows from the time dependent behavior (7). The eventual winner emerges
at time of order N . Using L(N) ∼= L(t ∝ N,N) we obtain

L(N) ' A(lnN)2 (9)

with A = F (1) = 1/2 (see Fig. 2). The correction to this leading asymptotic
behavior is of the order lnN . The logarithmic dependence implies that lead
changes are relatively infrequent.
Both the size of the leader and the number of lead changes grow logarith-

mically in the early time regime, l(t ≈ 1, N) ∝ L(t ≈ 1, N) ∝ lnN . The first
relation implies that initially the leader size predominantly grows in incre-
ments of one and every leader is a new leader. When t À 1, the size of the
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Fig. 2. The total number of lead changes L(N) versus the system size N . The sim-
ulation data represents an average over 104 independent realizations of the random
tree generation process with N up to 108.

leader greatly exceeds the number of lead changes as the increments of the
leader size grow roughly linearly with time.
The distribution of the number of lead changes Pn(t,N), i.e., the prob-

ability that n lead changes occur by time t, can be determined by noting
that lead changes occur by a random process in which the average flux of
probability to surpass the leader is d

dtL. Hence, the probability distribution

obeys d
dtPn = (

d
dtL) [Pn−1 − Pn] with the initial condition Pn(0, N) = δn,0.

Therefore, the distribution of the number of lead changes is Poissonian and
it is characterized solely by the average number of lead changes

Pn(t,N) =
[L(t,N)]n

n!
e−L(t,N). (10)

As a result, the ultimate number of lead changes is also Poissonian dis-
tributed, Pn(N) =

Ln

n! e
−L, with L ≡ L(N) given by Eq. (9). Asymptotically,

the Poissonian distribution approaches a Gaussian in the proximity of the
peak:

Pn(N) '
1√
2πL

exp

[

− (n− L)
2

2L

]

. (11)

The number of lead changes is a self-averaging quantity; however, the system

size should be huge to ensure that relative fluctuations δn
n ∼

√
L
L ∼ (lnN)−1

are small. Hence in a given realization for a system of size N = 108 (the
maximum size in our simulations), lead changes are still relatively erratic.
Another interesting quantity is S(N), the probability that no lead change

ever occurs. This is obviously the “survival” probability that the first leader,
whose size is initially k = 2, never relinquishes the lead. This survival prob-
ability is given by S(N) ≡ P0(N) = exp(−L), so it decays faster than a
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Fig. 3. The survival probability of the first leader S(N) versus the system size N
obtained from an average over 1010 independent realizations. The slope A = 1/2 is
in accordance with Eq. (12).

power-law but slower than a stretched exponential (Fig. 3)

S(N) ' exp
[

−A(lnN)2
]

. (12)

The above formalism extends to the statistics of the rth-largest tree. Using
Ul = r, the average size of the rth-largest tree grows according to lr ' t ln Nrt .
Moreover, the total number of changes in the group of r-largest trees grows
linearly with r according to r

2 (lnN)
2.

Among several open problems we mention just two: What is the size of
the winner (the last emerging leader)? At what time does the winner emerge?
The averages of both these random quantities grow linearly with N , but we
do not know the proportionality factors. The computation of these factors,
and the determination of the distribution of these random quantities, are
interesting open problems.

2.3 The Laggard

At the opposite end of the size spectrum sits the laggard, the smallest com-
ponent in the system. Unlike the leader, the laggard does not change its size
for a relatively long period. From the expression for the monomer density
n1 = N(1 + t)−2, we see that monomers are depleted from the system only
when the time becomes of the order of N 1/2. Until this time, the laggard
size remains unity. To investigate laggard statistics in the interesting regime
N1/2 ¿ t¿ N we employ the same approach as for the leader. First, we esti-
mate the cumulative distribution uk =

∑k
j=1 nj and find uk ' t−1(1−e−k/t).

Then we use the criterion u` = 1 and get the average laggard size

`(t,N) ' −t ln
(

1− t

N

)

. (13)
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In the time regime N1/2 ¿ t ¿ N , the above expression simplifies to
`(t,N) ' t2/N . As in the leader case, the laggard size is proportional to
the typical size, but modified by a logarithmic correction.
The number of changes in the identity of the laggard, L(t,N), is given by

d
dtL(t,N) = − ∂

∂tuk
∣

∣

k=l
. Using asymptotics for u and `, we simplify the right-

hand side and obtain d
dtL = t−1−Nt−2(1−t/N) ln(1−t/N) ' 2t−1 for t¿ N .

Integrating over time and recalling that the first laggard change occurs at
time of the order N1/2 we obtain L(t,N) '

∫ t

N1/2 ds 2s
−1. Consequently,

L(t,N) ' 2 ln t− lnN. (14)

This behavior can be recast in the scaling form L(t,N) ' (lnN)F (x) with
the same scaling variable as in the leader problem, x = ln t/ lnN , and the
linear scaling function F (x) = 2x − 1. The total number of laggard changes
saturates at

L(N) ' lnN. (15)

Numerical simulations confirm this behavior. Thus, the total number of lag-
gard changes is much smaller compared with the leader. This behavior is
intuitive: it is more difficult to catch up with the rest of the pack than it is
to remain ahead of the pack.
The distribution of the number of laggard changes is also Poissonian, as

in (10). Moreover, the survival probability still decays exponentially with the
total number of changes S(N) = exp[−L(N)]. However, the growth of the
average is only logarithmic in this case, so the survival probability decays as
a power law

S(N) ∼ N−1, (16)

i.e., much slower than in the leader case. This can be understood by con-
sidering the probability that the laggard remains a monomer until the very
last merger event between the final two subtrees. Interestingly, the size dis-
tribution of these final two trees is uniform as can be seen immediately by
considering the time-reversed merger process. The probability that the lag-
gard in the last merging event is a monomer is simply 2/(N − 1). This lower
bound for the survival probability is indeed consistent with (16). An inter-
esting open question is the size distribution of the loser (the final laggard).

2.4 Height Statistics

The height (or depth) of a tree branch provides another fundamental size
characterization. It is defined as the number of different-width line segments
between a branch and the tree root (see Fig. 1). Thus, different heights cor-
respond to different branches in the tree. It is therefore natural to ask: What
is the typical branch height? What is the typical tree height (the maximal
branch height)? What is the maximal tree height?
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First, consider the distribution of branch heights. Each time two branches
merge, the distance to the root increases by one (the branch height can also be
viewed as the generation number). Let h(t) be the average number of merger
events experienced by a given branch up to time t. The rate of growth of the
average height is proportional to the number density of trees and since the
merger rate equals 2, we have d

dth(t) = 2c(t), with h(0) = 0. Therefore, the
average branch height is h(t) = 2 ln(1 + t), or, in terms of the average tree
size m,

h = 2 lnm. (17)

Thus, the branch height grows logarithmically with its size. Because the
merger process is random, the probability Pn(t) that the branch height equals
n is Poissonian

Pn(t) =
[h(t)]n

n!
e−h(t), (18)

with h(t) the average height.
The height of a tree is defined as the maximal branch height. For example,

the (left-to-right) trees in Fig. 1 have heights of 2, 0, 3, and 1, respectively.
Based on the branch height behavior, we anticipate that the tree height grows
logarithmically, Hmax ' vmax lnm. Similar to the calculation of the maximal
size from the cumulative distribution, the tree height can be obtained heuris-
tically from the properly normalized branch height distribution c−1Pn via
∑

n≥Hmax
c−1Pn = 1. Estimating the tails of the Poisson distribution (18) by

using the Stirling formula leads to the transcendental equation [38]

v ln
2e

v
= 1. (19)

The larger root of this equation yields the growth of the tree height

Hmax ' vmax lnm, vmax ∼= 4.31107. (20)

This value was obtained in different contexts, including fragmentation pro-
cesses [30,31], and collision processes in gases, where this value is related to
the largest Lyapunov exponent [13].
Each tree carries a height k. The result of a merger between trees with

heights i and j is a tree with height max(i, j)+1. The number density of trees
with height k, Hk(t), evolves according to the master equation (the initial
conditions are Hk(0) = δk,0)

dHk

dt
= H2

k−1 − 2cHk +

∞
∑

j=k

Hj + 2Hk−1

k−2
∑

j=0

Hj . (21)

The rate equations (21) are more complicated than the recursive Smolu-
chowski equations (2) for the tree size distribution. Fortunately, one can
extract analytically almost all relevant information without explicitly solving
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Fig. 4. The traveling wave. Shown is the normalized distribution c−1Hk vs. k at
different times τ = 10, 20, 30, 40 obtained from numerical integration of the rate
equation (22).

Eqs. (21). Fig. 4 shows that the normalized distribution c−1Hk approaches a
traveling wave in the large time limit. This suggests seeking an asymptotic so-
lution of the traveling wave; this construction therefore greatly simplifies our
analysis. The traveling wave form has significant qualitative implications for
the tree height statistics, e.g., fluctuations with respect to the mean saturate
to some fixed value.
The equations simplify using the cumulative fractions Ak = c−1

∑k
j=0Hj

and the time variable τ =
∫ t

0
dt′ c(t′) = ln(1+ t). With these transformations,

Eqs. (21) become
dAk
dτ

= A2
k−1 −Ak (22)

with the initial conditions Ak(0) = δk,0. Substituting the traveling wave so-
lution, Ak(τ)→ A(k−vτ), into (22) we find that A(x) satisfies the nonlinear
difference-differential equation

vA′(x) = A(x)−A2(x− 1) (23)

with the boundary conditions A(−∞) = 0 and A(∞) = 1. This nonlinear and
nonlocal equation appears insoluble; however, important physical features can
now be established analytically. For example, both extreme tails of A(x) are
exponential:

A(x) ∼
{

ex/v x→ −∞;
1− e−λx x→∞. (24)

Consequently, the distribution of both very large and very small (compared
with the typical) heights are exponential. The propagation velocity of the
wave, which characterizes the typical behavior, follows from the large-k tail.
Substituting 1 − A(x) ∼ e−λx into (23) gives a dispersion relation, i.e., a
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relation between the velocity v and the decay constant λ:

v =
2eλ − 1

λ
. (25)

Out of the spectrum of possible v only one value, the maximal possible
velocity, is selected2. From (25) we find vmax ∼= 4.31107, corresponding to
λ ∼= 0.768039. This velocity satisfies (19) and is identical to the one obtained
heuristically (20). Numerical integration shows that a traveling wave is indeed
approached (Fig. 4) and the predicted propagation velocity is confirmed to
within 0.1%. The choice of the extremal velocity is the fundamental selection
principle that applies to classical reaction-diffusion equations [39–43] and to
numerous difference-differential equations [44].
The traveling wave form of the height distribution implies that the height

— the elemental random variable — is highly concentrated near the aver-
age; more precisely, each moment 〈(Hk − 〈Hk〉)n〉 is finite. Thus, accurate
determination of the average is especially important. We already know that
〈Hk〉 ∼= vτ ; a more sophisticated traveling wave technique yields the leading
(logarithmic) correction: 〈Hk〉 ∼= vτ − 3

2λ ln τ [38].
Similar analysis can also be performed for the minimal branch height [38].

The resulting velocity vmin ∼= 0.373365 is the smaller root of the transcen-
dental equation (19).

2.5 The Tallest and the Shortest

The tallest tree is defined as the one with largest height and similarly for
the shortest tree. The tallest and the shortest are merely the height leader
and laggard, respectively. The number of changes in the identity of these
extremal trees throughout the evolution process follows from the tails of the
height distribution.
Consider the height distribution Hk(t) and the corresponding cumulative

distribution Uk = N
∑

j≥kHj(t). Both of these distributions have exponen-

tial tails3, Uk(t) ∼ NHk(t) ∼ Ntλv−1 exp(−λk), as follows from the large-x
tail of the traveling wave (24). The criterion Ul = 1 yields the average height
of the tallest tree

l(t,N) ' λ−1 ln[Ntλv−1]. (26)

Indeed, the height of the tallest tree saturates at a time scale of the order N
consistent with the saturation value lfinal(N) ' v lnN . This is also an upper
bound for the total number of lead changes since the height of the tallest
tree grows by increments of unity. Similar to the leader, L(t ≈ 1) ∼ l(t ≈
2 This actually happens for a wide class of initial conditions including all that
vanish for sufficiently small k.

3 The proportionality factor is tacitly ignored as it is irrelevant asymptotically. The
determination of its value requires a nonlinear analysis of the traveling wave.
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Fig. 5. Number of times m the tallest tree changes versus time t in a single real-
ization with N = 107.

1) ∼ lnN . However, at later times the rate of change is slower, d
dtL(t) ∼ t−1,

as follows from the flux criterion d
dtL =

∂
∂tUk

∣

∣

k=l
. The overall number of

changes now grows slower than in the leader case L(N) ' ϕ lnN with ϕ ≤
vmax and consequently, the survival probability of the first tallest tree decays
algebraically

S(N) ∼ N−ϕ (27)

with an apparently non-trivial exponent ϕ. Determination this constant is
challenging since the number of lead changes in the early and the late time
regimes are comparable. Nevertheless, this heuristic approach successfully
yields extremal statistics of an extremal tree characteristic, namely, the max-
imal branch height. The irregular nature of the lead changing process is man-
ifest when a single realization is considered (Fig. 5).
Extremal statistics of the shortest tree follow from the cumulative dis-

tribution uk = N
∑

j≤kHj ∼ Nt−2 exp(k/v) and the criteria u` = 1 and
d
dtL = − ∂

∂tuk
∣

∣

k=`
. The size of the smallest tree thus grows according to

`(t,N) ' v ln t
2

N
(28)

for times t À N1/2 (at earlier times the shortest tree is a monomer). Even
though the shortest tree has a different growth law than the laggard (13), the
time dependent number of changes grows according to (14). Thus the total
number of changes L(N) ' lnN and the survival probability S(N) ∼ N−1

are as in the laggard case.
We conclude that leadership statistics generally exhibit logarithmic de-

pendences on the system size. However, they are not universal. Different
behaviors may characterize leaders and laggards and the behavior may de-
pend on the type of geometric feature, i.e., size or height. We have observed
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both linear and quadratic growth with lnN . A third possibility, saturation
at a finite value, is found for random networks, as will be shown below.

3 Random Graphs

Random graphs are fundamental in theoretical computer science [9,14,10,15].
They have been used to model social networks [21,22], and physical processes
such as percolation [45] and polymerization [16]. We discuss size statistics
only. The size distribution is derived and then used to obtain leader statistics.

Fig. 6. A random graph. The dashed line indicates a newly-added link that joins
two randomly-selected nodes. The probability of joining together two components
that contain i and j nodes is proportional to ij.

3.1 The Size Distribution

A random graph is grown from an initially disconnected graph with N nodes.
Two nodes are then selected at random and are connected. This process
occurs at a constant rate, that we set equal to unity without loss of generality.
This linking is repeated indefinitely until all N nodes form a single connected
component.
Let nk be the number of components of size k. The normalized density

ck = nk/N evolves according to the Smoluchowski equation

dck
dt
=
1

2

∑

i+j=k

ijcicj − k ck. (29)

The initial conditions are ck(0) = δk,1. In writing (29), the conservation law
∑

k kck = 1 is employed. Equations (29) reflect that components are linked
with a rate proportional to the product of their sizes.
The generating function F (z, t) =

∑

k kck(t)e
kz, evolves according to

∂F
∂t = (F − 1)∂F∂z with the initial condition F (z, 0) = ez. Writing the deriva-

tives through Jacobians, ∂F∂t =
∂(F,z)
∂(t,z) and

∂F
∂z =

∂(F,t)
∂(z,t) , and using the relation

∂z
∂t =

∂(z,F )
∂(t,F ) , the nonlinear equation for F (z, t) is recast into the linear equa-

tion ∂z
∂t = 1− F , from which we get4 z(t) = (1− F )t+ lnF . Exponentiating

4 The integration constant lnF follows from the initial condition F (z, 0) = ez.
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this equality gives an implicit relation for the generating functions

F (z, t) e−tF (z,t) = ez−t. (30)

The Lagrange inversion formula5 conveniently yields the size distribution
[47,48]

ck(t) =
(kt)k−1

k · k! e
−kt. (31)

The system undergoes a gelation transition at time tg = 1. At this point a
giant component arises that eventually engulfs the entire mass in the system.
Close to the gelation time, the size distribution attains the scaling behavior

ck(t) ' k−5/2∗ Φ(k/k∗), (32)

with the scaling function Φ(z) = 1√
2π
z−5/2e−z/2. The typical size diverges,

k∗ ' (1− t)−2, as t→ tg. Beyond the gelation point, there exists an infinite
sequence of transitions at times tk ' k−1 lnN beyond which components of
size k disappear. At the last such transition time t1, the system consists of
the giant component and a few surviving monomers. The smallest component
is always a monomer and the laggard problem is trivial.

3.2 The Leader

The size of the giant component (the last emerging leader) follows from the
size distribution. Exactly at the gelation time, the large-size tail of the size
distribution is algebraic, ck(t = 1) ∼ k−5/2, so that the cumulative distribu-
tion is uk ∼ Nk−3/2. The criterion ulw ∼ 1 gives the average size of the giant
component lw ∼ N2/3 [14] and the time at which it emerges is 1−tw ∼ N−1/3.
Consider the size of the leader, l(t,N), and the number of lead changes

L(t,N). At early times (t¿ 1), the behavior is the same as for random trees:
the size of the leader l(t,N), the number of lead changes L(t,N), as well
as the number of distinct leaders are all of the order lnN . The asymptotic
time regime in this case is t → 1, as suggested by the size distribution. The
tail of the size distribution together with ul = 1 yield an implicit relation
for the size of the leader, l ' 2(1− t)−2 lnN − 3(1− t)−2 ln l . Substituting
the zeroth order approximation l(0) = 2(1− t)−2 lnN into ln l and ignoring
subdominant ln lnN terms gives the leader size

l(t,N) ' 2

(1− t)2 ln[N(1− t)
3]. (33)

At early stages (t¿ 1) the leader size grows logarithmically with the system
size. Moreover, the leader size is proportional to the typical size but with a
logarithmic enhancement.

5 The series v =
∑

n≥1

nn−1

n!
un is a solution of the equation ve−v = u [46].
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The rate of leadership change is estimated as in the random tree case
and we find d

dt L(t,N) = (1 − t) l(t,N), so that the time dependence of the
number of lead changes is

L(t,N) ' 2 lnN ln
1

1− t − 3
[

ln
1

1− t

]2

. (34)

It follows that the scaling form is

L(t,N) ' (lnN)2 F (x) x =
ln 1

1−t
lnN

, (35)

with the scaling function F (x) = 2x − 3x2. This scaling function is related
to the leader size: l(t,N) ' k∗ lnNf(x), with f(x) =

d
dxF (x) = 2− 6x. The

scaling behavior is obeyed until the giant component emerges, i.e., up to a
time tw, with 1− tw ∼ N−1/3. We neglected extremely slowly growing terms
that are of the order ln lnN/ lnN to obtain the scaling behavior. Thus, the
approach to the scaling behavior may be very slow.
The total number of lead changes, L(N) ' 1

3 (lnN)
2, is similar to the ran-

dom tree case6. Furthermore, the distribution of lead changes is Poissonian,
as in (10), and the survival probability decays according to (12).
Random trees and random graphs show very different size characteristics.

Gelation occurs in one case but not in the other. Nevertheless, leadership
statistics in these two systems are remarkably similar. In both cases, the total
number of lead changes grows as L(N) ∼ (lnN)2. Moreover, the seemingly
different scaling variables underlying (8) and (35) can be both related to the
typical size x = ln k∗/ lnN .

4 Random Networks

In the case of sequentially growing networks, the basic quantity is the degree
distribution Nk, defined as the number of nodes of degree k when the network
contains N total nodes. In this section, we investigate extremal properties of
the degree distribution. We are again interested in the leader, namely, the
node with the highest degree and its associated statistical properties.

4.1 Identity of the Leader

We characterize the J th node that enters the network as having an index J
(Fig. 7). To start with an unambiguous leader node, we initialize the system
to have N = 3 nodes, with the initial leader having degree 2 (and index 1)
and the other two nodes having degree 1. A new leader arises when its degree
exceeds that of the current leader.

6 The relation 1 − tw ∼ N−1/3 shows that x ≤ 1/3, and the prefactor is obtained
from the scaling function: A = F (1/3) = 1/3.
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Fig. 7. A random network. The network is grown by adding links sequentially. A
new node has a single outgoing link that joins to an earlier node of degree k with
an attachment rate Ak. Each node is labeled by its index J .

For a constant attachment rate (Ak = 1), the average index of the leader
grows algebraically, Jlead(N) ∼ Nψ, with ψ ≈ 0.41. The leader is typically an
early node (since ψ < 1), but not necessarily one of the very earliest. For ex-
ample, a node with index greater than 100 has a probability of approximately
10−2 of being the leader in a graph of N = 105 nodes. Thus the order of node
creation plays a significant but not deterministic role in the identity of the
leader node for constant attachment rate — there is partial egalitarianism.
We can understand this behavior analytically from the joint index-degree

distribution. Let Ck(J,N) be the average number of nodes of index J and
degree k. For constant attachment rate, this joint distribution obeys the rate
equation

∂Ck
∂N

=
∂Ck
∂J

+
Ck−1 − Ck

N
+ δk1δ(N − J). (36)

This is a slight generalization of the rate equation for the degree distribution
itself [49]. The new feature is the first term on the right that accounts for
node “aging”.
The homogeneous form of this equation implies a self-similar solution.

Thus, we seek a solution as a function of the single variable J/N rather than
two separate variables [49]

Ck(J,N) = fk(x) with x =
J

N
. (37)

This turns Eq. (36) into the ordinary differential equation

−x dfk
dx
= fk−1 − fk. (38)

We have omitted the delta function term, since it merely provides the bound-
ary condition ck(J = N,N) = δk,1, or fk(1) = δk,1. The solution is simply
the Poisson distribution in the variable lnx, i.e.,

Ck(J,N) =
J

N

| ln(J/N)|k−1
(k − 1)! , (39)
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from which the average index of a node of degree k is

Jk(N) =

∑

1≤J≤N J Ck(J,N)
∑

1≤J≤N Ck(J,N)
= N

(

2

3

)k

. (40)

Thus the index of the leader is Jlead(N) = N(2/3)kmax . The maximum degree
is estimated from the extreme value criterion

∑

k≥kmax
Nk(N) ≈ 1 and using

Nk(N) = N/2k [49] gives kmax ∼ lnN/ ln 2. Therefore [50]

Jlead(N) ∼ Nψ, with ψ = 2− ln 3
ln 2
∼= 0.415 037,

in excellent agreement with numerical results.
For the linear attachment rate, Ak = k, numerical simulations indicate

that a rich gets richer phenomenon arises, as the average index of the leader
Jlead(N) saturates to a finite value of approximately 3.4 as N → ∞. With
probability ≈ 0.9, the leader is among the 10 earliest nodes, while the proba-
bility ≈ 0.99 the leader is among the 30 earliest nodes [50]. In general, we find
similar behavior for the more general case of the shifted linear attachment
rate Ak = k + λ.
We can understand these results analytically through the joint index-

degree distribution. For the linear attachment rate one has [49]

Ck(J,N) =

√

J

N

(

1−
√

J

N

)k−1

, (41)

from which Jk(N) = 12N/[(k + 3)(k + 4)]. Since Nk(N) ' 4N/k3 for linear
attachment [51,49], the extreme statistics criterion now gives kmax ∼ N1/2.
Therefore Jlead(N) ' 12N/k2max = O(1) indeed saturates to a finite value.
Thus the leader is one of the first few nodes in the network.

4.2 Number of Lead Changes

In contrast with random trees and random graphs, the average number of
lead changes L(N) grows only logarithmically in N for both the attachment
rates Ak = 1 and Ak = k. While the average number of lead changes appears
to be universal, there is a significant difference in the distribution of the
number of lead changes, Pn(N), at fixed N . For Ak = 1, this distribution
is sharply localized, while for Ak = k, Pn(N) has a significant large-n tail.
This tail stems from repeated lead changes among the two leading nodes.
Related to lead changes is the number of distinct nodes that enjoy the lead
over the history of the network. Simulations indicate that this quantity also
grows logarithmically in N .
This logarithmic behavior can be easily understood for the attachment

rate Ak = 1. Here the number of lead changes cannot exceed an upper bound
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given by the maximal degree kmax ∼ lnN/ ln 2. To establish the logarithmic
growth for the general attachment rate Ak = k + λ, we first note that when
a new node is added, the lead changes if the leadership is currently shared
between two (or more) nodes and the new node attaches to a co-leader. The
number of co-leader nodes (with degree k = kmax) is N/k

3+λ
max , while the

probability of attaching to a co-leader is kmax/N . Thus the average number
of lead changes satisfies

dL(N)

dN
∼ kmax

N

N

k3+λmax

. (42)

Since kmax ∼ N1/(2+λ), Eq. (42) reduces to dL/dN ∼ N−1 and thus gives
the logarithmic growth L(N) ∼ lnN .

4.3 Fate of The First Leader

We now turn to the probability that the first leader retains the lead through-
out the network growth. For the linear attachment rate Ak = k + λ (rich
get richer systems), the initial leader has a finite chance to remain in the
lead forever. However, for the egalitarian attachment rate Ak = 1, the initial
leader is eventually replaced by another leader. Here, the probability that
the initial leader retains the lead decays very slowly in time with an unusual
decay law.

To understand the fate of the initial leader, we need to understand the
degree distribution of the first node. We can straightforwardly determine this
degree distribution analytically for the constant and linear attachment rates
[50,52]. Let P (k,N) be the probability that the first node has degree k in a
network of N links7. For Ak = k, this probability obeys [50]

P (k,N + 1) =
k − 1
2N

P (k − 1, N) + 2N − k
2N

P (k,N). (43)

The first term on the right accounts for the case that the earliest node has
degree k − 1. Then a new node attaches to it with probability (k − 1)/2N ,
thereby increasing the probability for the node to have degree k. Conversely,
with probability (2N − k)/2N a new node does not attach to the earliest
node, thereby giving the second contribution to P (k,N + 1).

The solution to Eq. (43) for the “dimer” initial condition ◦ ◦ is

P (k,N) =
1

22N−k−1
(2N − k − 1)!
(N − k)! (N − 1)! . (44)

7 The normalized attachment probability is Ak/A, with A =
∑

AjNj . For the
linear attachment rate, A is twice the total number of links. Hence formulae are
neater if we denote by N the total number of links.
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For N →∞, this simplifies to the Gaussian distribution

P (k,N) ' 1√
πN

e−k
2/4N (45)

for finite values of the scaling variable k/N 1/2. Thus the typical degree of the
first node is of the order of N 1/2; this is the same scaling behavior as the
degree of the leader node. For the trimer initial condition (which we typically
used in simulations) we obtain the degree distribution of the first node as a

series of ratios of gamma functions in which P (k,N) has an e−k
2/4N Gaussian

tail, independent of the initial condition. The degree of the first node also
approximates that of the leader node more and more closely as the degree of
the first node in the initial state is increased [53].

Although P (k,N) contains all information about the degree of the first
node, the behavior of its moments 〈ka〉N =

∑

kaP (k,N) is simpler to appre-
ciate. To determine these moments, it is more convenient to construct their
governing recursion relations directly, rather than to calculate them from
P (k,N). Using Eq. (43), the average degree of the first node satisfies the
recursion relation 〈k〉N+1 = 〈k〉N

(

1 + 1
2N

)

whose solution is

〈k〉N = Λ
Γ
(

N + 1
2

)

Γ
(

1
2

)

Γ (N)
' Λ√

π
N1/2 . (46)

The prefactor Λ depends on the initial conditions, with Λ = 2, 8/3, 16/5, . . .
for the dimer, trimer, tetramer, etc., initial conditions.

This multiplicative dependence on the initial conditions means that the
first few growth steps substantially affect the average degree of the first
node. For example, for the dimer initial condition, the average degree of
the first node is, asymptotically, 〈k〉N ' 2

√

N/π. However, if the second
link attaches to the first node, an effective trimer initial condition arises and
〈k〉N ' (8/3)

√

N/π. Thus, small initial perturbations lead to huge differences
in the degree of the first node.

An intriguing manifestation of the rich get richer phenomenon is the be-
havior of the survival probability S(N) that the first node leads throughout
the growth up to size N (Fig. 8). For the linear attachment rate, S(N) satu-
rates to a finite non-zero value of approximately 0.277 as N →∞; saturation
also occurs for the general attachment rate Ak = k + λ. We conclude that
for popularity-driven systems, the rich get richer holds in a strong form—the
lead never changes with a positive probability.

For constant attachment rate, S(N) decays to zero as N → ∞, but the
asymptotic behavior is not apparent even when N = 108. A power law
S(N) ∼ N−φ is a reasonable fit, but the local exponent is still slowly de-
creasing at N ≈ 108 where it has reached φ(N) ≈ 0.18. To understand the
slow approach to asymptotic behavior, we study the degree distribution of
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Fig. 8. The probability that the first node leads throughout the evolution obtained
from 105 realizations of up to size N = 107 for Ak = k (upper), and up to N = 108

for Ak = 1 (lower).

the first node. This quantity satisfies the recursion relation

P (k,N) =
1

N
P (k − 1, N − 1) + N − 1

N
P (k,N − 1) (47)

which reduces to the convection-diffusion equation

(

∂

∂ lnN
+

∂

∂k

)

P =
1

2

∂2P

∂k2
(48)

in the continuum limit. The solution is a Gaussian

P (k,N) ' 1√
2π lnN

exp

[

− (k − lnN)
2

2 lnN

]

. (49)

Therefore the degree of the first node grows as lnN , with fluctuations of
the order of

√
lnN . On the other hand, the maximal degree grows faster, as

lnN/ ln 2, with negligible fluctuations.
We now estimate the large-N behavior of S(N) as

∑

k≥kmax
P (k,N). This

approximation gives

S(N) ∼
∫ ∞

v lnN

dk√
lnN

exp

[

− (k − lnN)
2

2 lnN

]

∼ N−φ (lnN)−1/2 , (50)

with φ = [(ln 2)−1− 1]2/2 ∼= 0.097989. The logarithmic factor leads to a very
slow approach to asymptotic behavior.
The above estimate is based on a Gaussian approximate for P (k,N) which

is not accurate for |k − lnN | À
√
lnN . However, we can determine P (k,N)

exactly because its defining recursion formula, Eq. (47), is closely related to
the Stirling numbers

[

N
k

]

of the first kind [54]. For the dimer initial condition,
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the solution reads P (k,N) =
[

N
k

]

/N !. The corresponding generating function
is [54]

SN (x) =
N
∑

k=1

P (k,N)xk =
x(x+ 1) . . . (x+N − 1)

N !
. (51)

Using the Cauchy theorem, we express P (k,N) in terms of the contour in-
tegral SN (x)/x

k+1. When N → ∞, this contour integral is easily computed
using the saddle point technique. Finally, we arrive at Eq. (50) with the same
logarithmic prefactor but with the slightly smaller exact transcendental ex-
ponent φ = 1− 1+ln ln 2

ln 2
∼= 0.08607. The remarkably small exponent value and

the logarithmic correction are the reasons why simulations with N = 108

observed an exponent that was more that twice larger.

5 Summary and Discussion

Extremal properties provide an important statistical characterization of ran-
dom structures and these properties yield many insights and surprises. Gener-
ally, extremes involve logarithmic dependences on system size. The practical
consequences are numerous: slow convergence to asymptotic behavior, signif-
icant statistical fluctuations, erratic changes in extremal characteristics, and
sensitive dependence on the initial conditions. Such behavior is consistent
with our experience. For example, changes in athletic records are rare and
unpredictable. As another example, the number of changes in the compo-
sition of the bellwether Dow Jones stock index (the 30 largest companies)
ranged from a high of 11 in the 1990’s to a low of 0 in the 1950’s [55].
Leadership statistics of random graphs and random trees are quite similar:

lead changes are infrequent; their total number increases logarithmically with
the system size. The time-dependent number of lead changes approaches a
self-similar form. The convergence to the asymptotic behavior is much slower
for extremal statistics compared with size statistics because of the presence of
various logarithmic dependences. Hence, the asymptotic behavior is difficult
to detect in practice, especially for random graphs.
The most elementary leadership characteristic is the overall number of

lead changes as a function of system size. This quantity can be measured
simply by counting the number of changes until the process ends, making
no reference to time. We have seen that introducing the time variable and
treating the merger process dynamically not only produces this quantity,
but also reveals an important self-similar behavior throughout the growth
process.
Lead changes are also rare in popularity-driven network growth processes,

where leadership is restricted to the earliest nodes. With finite probability, the
first node remains the leader throughout the evolution. For growth with no
popularity bias, leadership is shared among a somewhat larger cadre of nodes.
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As a consequence, the average index of the leader node grows algebraically
with the network size. The possibility of sharing the lead among a larger
subset of nodes gives a rich dynamics in which the probability that the first
node retains the lead decays algebraically with the system size.
Extremal height properties of random trees can be obtained by analyzing

the underlying nonlinear evolution equations. The cumulative distributions
of tree heights approach a traveling wave form and the mean values grow
logarithmically with the tree size. The corresponding growth coefficients can
be obtained using either an elementary probabilistic argument or using an
extremum selection criteria on the traveling wave. The same formalism used
to analyze the leader and the laggard extends naturally to extremal statistics
of extremal characteristics such as the heights of the tallest and the shortest
trees.
To obtain leader or laggard characteristics, we employed the scaling be-

havior of the size distribution outside the scaling regime, namely, at sizes
much larger than the typical size where, at least formally, statistical fluctua-
tions can no longer be ignored. Nevertheless, the size dependences for these
various leadership statistics appear to be asymptotically exact. Further anal-
ysis is needed to illuminate the role of statistical fluctuations, for example,
by characterizing corrections to the leading behavior [56–58].
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